ratios: comparison of 2 values using division 3:5 $\quad \frac{3}{5} \quad 3$ to $5 \quad$ Always simplify to compare ratios with different denominators, divide.
If you divide 2 values with different units.
you end of with a unit rate (denominator $=1$)
(Ex) Compare to find the better quarterback
Peytor Manning TomBrady
2012 Total Yards: 38122012 Total Yards: 3633
2012 \# completions: 330 2012 \# completions: 325
3812 t.yarde $\div 330$ completions 3633 t.yards $\div 325$ completions
$=11.55$ yards per \mid completion $=11.18$ yards per \mid completion
so according to these not-quite-exact numbers, Peyton Manning gets more Yards per Completion and appears to be the better QB.
Conversions: Rates use division to compare quantities, and Rates can be changed to suit ones needs. This is where you use your green conversion sheet (Ex) 3 miles $=$ \qquad fiat

$$
\text { Answer } 3 \text { miles } \times \frac{5280 \mathrm{ft}}{1 \text { mite }}=3 \text { mites } \times \frac{5280 \mathrm{ft}}{1 \text { mite }}=15840
$$

(εx) $30 \mathrm{mph}=$ \qquad $\mathrm{ft} / \mathrm{sec}$

$$
\text { Answer: } \frac{30 \text { miles }}{1 \text { hour }} \times \frac{5280 \mathrm{ft}}{1 \text { mil }} \times \frac{1 \text { hour }}{3600 \text { sec }}=\begin{gathered}
\text { notice how we use } \\
\text { green facts Ans multilicaing }
\end{gathered}
$$

$$
\begin{aligned}
& \left.\frac{30 \text { mites }}{1 \text { hor }} \times \frac{5280 \mathrm{ft}}{1 \text { mike }} \times \frac{1 \text { hour }}{3600 \mathrm{sec}}=\begin{array}{l}
\text { to switch the units to go } \\
\text { from what we had }\left(\frac{\text { miles }}{\mathrm{l} .}\right) \\
\text { fo what we want }\left(\frac{\mathrm{ft}}{\mathrm{sec}}\right)
\end{array}\right) \\
& \frac{158400 \mathrm{ft}}{3600 \mathrm{sec}}=44 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Proportions when 2 fractions that are equal in valve are written equal to one another, it is called a proportion. $\quad \frac{3}{4}=\frac{6}{8} \quad \frac{75}{200}=\frac{3}{8}$
If 2 fractions ore proportional (equal) to ore another, then 2 things are true: (1) the numerators and denominators share a multipher, and
(2) their cross products are equal
(Ex) Are $\frac{4}{7}$ and $\frac{12}{21}$ proportional to one another?

Multipliss option
$\frac{4}{7 \times 3}=\frac{12}{21}$ And since the
multiplier is 3 for
the numerator ArD the denominator, the 2 fractions are proportional. cross-product option

$$
\begin{aligned}
& \frac{4}{7}=\frac{12}{21} \\
& 4 \times 21=84 \quad 7 \times 12=84
\end{aligned}
$$

The fractions are proportional because their cross-products are equal.
These 2 options both allow you to find a missing valve if you know the fractions are proportional.
(εx) Find the missing value $x \cdot \frac{10.5}{14}=\frac{12}{x}$

therefore $x=16$

$$
x=16
$$

Sometimes questions arise that do not immediathly sound/look like a proportion question. You ma-/ recognize them because they will have keywords Such as "is", "of", and "percent."

When you see this, remember the proportion
(εx) What is $32 \% \quad(\varepsilon x)$ What percent of of 195? $\quad 1050$ is 350?

$$
\begin{array}{rr}
\frac{x}{195}=\frac{32}{100} & \frac{350}{1050}=\frac{x}{100} \\
x=62.5 & x=33.3 \%
\end{array}
$$

Mark-up and mark-down, percents
All of the problems in this section can be done the same way.

STEP 1: Writs your percents using the percent given.
(Ex) A flat screen tr is on sale at 20% off for $\$ 1350.00$. What was the original price of the Tv?

$$
20 \% \quad 120 \% \quad 80 \%
$$

percent given $\underset{\text { percent given }}{1001_{0}+} \quad 100 \%-\underset{\text { - gerent }}{\text { given }}$
Step 2: Choose the percent appropriate for the problem.
The sale price is given to be $\$ 1350.00$. A sale price is one that has had something removed from the original (100%), so the last percent (80\%) makes the most sense.
Step 3: Place the percent you've picked.

$$
-=\frac{80 \%_{0}}{100 \%} \leftarrow \begin{gathered}
\text { Remember this } 100 \text { is } \\
\text { a.contrant } \\
\text { always th es }
\end{gathered}
$$

STEP 4: Place the numbeR into the correct location so the number matches the present.
This number(sals price)

$$
\begin{aligned}
& \text { matches the 8010 } \\
& \text { sale price compared to } \\
& \text { the 100\% original price. }
\end{aligned} \frac{\$ 1350}{\chi}=\frac{80 \%}{10 \bigcirc \%_{0}<\begin{array}{c}
\text { Remember this } 100 \text { is } \\
\text { alwanstant so it is } \\
\text { always these }
\end{array}}
$$

If all else fails, look λ
at what you are asked
for. In this case the original pries
is what is unknown. so the variable goes here.
Step 5: Solve the proportion

$$
X=\$ 1687.50
$$

Review
Combine like terms, distributive property, simplify
Remember that like trims can be added or subtracted As long as they have the same variable component (s)
((x) Simplify $2 x+3 y-10 x$

$$
=-8 x+3 y
$$

Next, remember how to distribute (multiply) A
coefficient into a grouping symbol.

$$
\begin{aligned}
(\varepsilon x) & 4(3 x+2 y-5)+10 \\
= & 12 x+8 y-20+10 \\
= & 12 x+8 y-10
\end{aligned}
$$

Finally, remember to always observe the order of operations. The distributive property is multiplication.
($2 x$) $5-8(3 x-2)$
though the problem is
"minus eight," we tran
the minus as a negative.

$$
=21-24 x
$$

Translate variable expressions
Review Key word phrases for Addition,
Subtraction, multiplication and division.
Pay special attention to the two special Subtraction phrases "less than "and "Subtracted from."

* Also pay special attention to the formal phrases for the 4 operations.
Addition "the sum of \qquad and \qquad "
subtraction "the difference between \qquad and \qquad "
multiplication "the product of \qquad and \qquad "

Division "the quotient of \qquad and \qquad $"$

